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Oversampled ADCs

Layout of Matching Critical Components
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Final Exam: Scheduled for Tuesday May 4 12:00 noon

Take-home format:

Will be posted by 8:00 a.m. on Monday May 3

Return on Canvas by 5:00 p.m. on Wednesday May 5
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Over-Sampled Data Converters

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

General Classes



Nyquist Rate
TSIG

Sampling Clock

t



Over-Sampled

Quantizer  Levels

Effective Decimated 

Quantizer  Levels

Sampling Clock

Effective Sampling Clock

Over-sampling ratios of 128:1 or 64:1 are common

Dramatic reduction in quantization noise effects

Limited to relatively low frequencies



Recall:

MatLab  Results

fSIG=50Hz

fNYQ=100Hz

fSAMP=2.3KHz

Oversampled: 23:1



Quantization Effects

Simulation environment:

NP=23

fSIG=50Hz

Recall:



Quantization Effects
Res = 4 bits

fSIG=50Hz

fNYQ=100Hz

fSAMP=1113KHz

Oversampled: 11:1

Recall:

 LSB
 RMSE

12

X

RMS Quantization Noise:

Lets now increase resolution



Quantization Effects
Res = 10 bits

Quantization noise is much lower but still significant

fSIG=50Hz

fNYQ=100Hz

fSAMP=1113KHz

Oversampled: 11:1

 LSB
 RMSE

12

X

Recall:

Lets now increase  oversampling ratio (i.e. number of samples)



Quantization Effects
Res = 10 bits

Compared to the previous slide, it appears that the quantization noise has gone down

 LSB
 RMSE

12

X

fSIG=50Hz

fNYQ=100Hz

fSAMP=8904KHz

Oversampled: 89:1

Recall:

But has it ? Magnitude of quantization DFT terms decreased but ERMS unchanged



Quantization Effects
Res = 10 bits

Can any additional useful information about the input be obtained since we have 

many more samples than are needed? 

 LSB
 RMSE

12

X

fSIG=50Hz

fNYQ=100Hz

fSAMP=8904KHz

Oversampled: 89:1

Recall:



Over-Sampling

Res = 10 bits

What would happen if we break the 4096 samples into  groups of 20 samples and form?

 LSB
 RMSE

12

X

fSIG=50Hz

fNYQ=100Hz

fSAMP=8904KHz

Oversampled: 89:1

XIN
ADC

n
XOUT

 
20

1

1ˆ ( 20 ) 20
20

OUT SAMP OUT SAMP SAMP

j

X k T x jT kT


  

• Though the individual samples have been quantized to 10 bits, the arithmetic operations 

will have many more bits

• The effective sampling rate has been reduced by a factor of 20 but is still over 4 times the 

Nyquist rate

• Has the quantization noise been reduced (or equivalently has the resolution of the ADC 

been improved?

• Is there more information available about the signal?

? RMSE 



Over-Sampling

Res = 10 bits

Since the quantization noise is at high frequencies, what would happen if filtered the 

Boolean output signal? 

 LSB
 RMSE

12

X

fSIG=50Hz

fNYQ=100Hz

fSAMP=8904KHz

Oversampled: 89:1

XIN
ADC

n
XOUT

 
0

( )
m

OUT SAMP j OUT SAMP

j

Y kT a x k jT


 

XIN
ADC

n

XOUT Digital 
Filter n=?

YOUT

   
0 1

( )
m h

OUT SAMP j OUT SAMP j OUT SAMP

j j

Y kT a x k jT b Y k jT
 

    Or

? RMSE 



Over-Sampling

Res = 10 bits

 LSB
 RMSE

12

X

fSIG=50Hz

fNYQ=100Hz

fSAMP=8904KHz

Oversampled: 89:1

 
0

( )
m

OUT SAMP j OUT SAMP

j

Y kT a x k jT


 

   
0 1

( )
m h

OUT SAMP j OUT SAMP j OUT SAMP

j j

Y kT a x k jT b Y k jT
 

    

What does this difference equation represent?

• Moving Average (MA) Digital Filter

• Filter shape (e.g. low-pass, band-pass, high-pass, … 

dependent upon <ai> coefficients)

What does this difference equation represent?

• Auto Regressive Moving Average (ARMA) Digital Filter

• Filter shape (e.g. low-pass, band-pass, high-pass, … 

dependent upon <ai> and <bj> coefficients)



Over-Sampling

Res = 10 bits

Since the quantization noise is at high frequencies, what would happen if filtered and 

decimated the Boolean output signal? 

 LSB
 RMSE

12

X

fSIG=50Hz

fNYQ=100Hz

fSAMP=8904KHz

Oversampled: 89:1

XIN
ADC

n
XOUT

 

   

0

0 1

( )

( )

m

OUT SAMP j OUT SAMP

j

m h

OUT SAMP j OUT SAMP j OUT SAMP

j j

Y kT a x k jT

Y kT a x k jT b Y k jT



 

 

   



 

XIN
ADC

n

XOUT Digital 
Filter n=?

YOUT

Decimator
n=?

ZOUT

? RMSE 



Over-Sampling

 LSB
 RMSE

12

XXIN

ADC
n

XOUT

XIN
ADC

n

XOUT Digital 
Filter n=?

YOUT

Decimator
n=?

ZOUT

ADC
n

XOUT Sliding 
Averager n=?

XIN
YOUT(mTSAMP)

? RMSE 

? RMSE 

• What is the overhead?

• What is the performance potential?

• How can these or related over-sampling approaches be designed?

• Though this approach may help quantization noise, will not improve ADC linearity



Over-Sampling
XIN

ADC
n

XOUT Digital 
Filter n=?

YOUT

f0

f

0.5fs

Quantization Noise12
2

LSB

S

X

f

f0

f

0.5fs

1

 j TH e 

f0

f

0.5fs

Quantization Noise

12
2

LSB

S

X

f

0

1

2
SfOSR

f


fS=fSAMP

With ideal lowpass filter with band-edge at f0

1

12

LSB
Qrms

V
V

OSR


For sinusoidal input with p-p value VREF

6.02 1.76 10log( )SNR n OSR  

Improvement of 3dB/octave or 0.5bits/octave 

Oversampling increases resolution and if followed by 

LP filter Reduces Quantization Noise!  



Over-Sampling
XIN

ADC
n

XOUT Digital 
Filter n=?

YOUT

t

V

VREF

Example:   If we sample a sinusoidal waveform at a rate of 1000 

samples/period with a 4-bit ADC and at each time we create a 16-point 

moving sum, how many digits will we have at each sample point?  

Have we created an 8-bit ADC by simply over sampling? 

If the 4-bit ADC has INL at the 16-bit level, what will be the INL of the 8-bit ADC?  

What is the quantization noise of the 8-bit ADC?

What is the quantization noise of the 4-bit ADC? 

_ 4

_ 4 512 2 12 2 3

LSB REF REF
n RMS

V V V
V   

_ 8

_ 8 912 2 12 2 3

LSB REF REF
n RMS

V V V
V   

How many digital output codes will be present ? 256



Over-Sampling
XIN

ADC
n

XOUT Digital 
Filter n=?

YOUT

t

V

VREF

Is over-sampling followed by digital filtering a practical way to increase the 

effective resolution of an ADC? 

In the previous example, the Digital Filter was a MA filter, other  Digital 

Filters could be used 

One limitation of this approach is that to get a major increase in effective 

resolution, the over sampling ratio gets very large since ENOB varies with the 

square root of the OSR

Is the digital computation overhead acceptable?  



Over-Sampling
XIN

ADC
n

XOUT Digital 
Filter n=?

YOUT

t

V

VREF

t

V

VREF

Consider same 4-bit ADC with 16-point Moving Average digital filter

What will be the output if a constant input is applied ? 

Will it still be an 8-bit output?

If a large number of constant input signals are applied, how many 

output codes will there be? 16



Over-Sampling
XIN

ADC
n

XOUT Digital 
Filter n=?

YOUT

t

V

VREF

t

V

VREF

Consider same 4-bit ADC with 16-point Moving Average digital filter

Be careful about performance relative to speckmanship !

Is there some way to actually take advantage of the over-sampling to increase 

the apparent resolution without facing the static resolution problem? 

Can add random noise, or dither, or use ΔΣ modulation or other ways as well



• Anti-aliasing filter at the input (if needed) to limit bandwidth of input 

signal

• ADC is often simply a comparator

• CLK is much higher in frequency than effective sampling rate (maybe 

128:1 though lower OSR also widely used)

• Can obtain very high resolution but effective sampling rate is small

• With clever design, this approach can reduce quantization effects 

and improve linearity

Over-sampled ADC

XIN

XOUT

n
ADC

Decimator /

Filter

n1

CLK

Oversampled ADC

Anti-aliasing 

Filter
(if needed)



XIN Filter

DAC

XOUT

n
ADC

Decimator /

Filter

n1

CLK

Oversampled ADC

If Modulator is added, the over-sampled ADC becomes a ΔΣ ADC

ΔΣ ADC concept introduced  by Yasuhiko Yasuda in the early 1960’s 

while he was a student at the University of Tokyo

Candy (1974) and Temes credited with incorporating the concept in 

integrated data converters 

Δ modulation introduced by Deloraine in 1946

Over-sampled ΔΣ ADC  (Delta-Sigma)

https://en.wikipedia.org/wiki/The_University_of_Tokyo


XIN Filter

DAC

XOUT

n
ADC

Decimator /

Filter

n1

CLK

Oversampled ADC

• Linearity performance almost entirely determined by that of the DAC

• 1-bit DAC (i.e. only a comparator for ADC) is inherently linear and 

widely used

• 20-bit linearity is achievable without any trimming using 1-bit DAC

Example:  To obtain 16-bit linearity with a 10-bit DAC, the 10-bit DAC must be 

linear to at least the 16-bit level.  This would usually require tedious trimming 

of the DAC

Over-sampled ΔΣ ADC  (Delta-Sigma)
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Assume ADC and DAC have unity gain (for convenience only)

Model the ADC as an ideal ADC with a quantization noise source 

Decimator/Filter follow the modulator so can be neglected in analysis of 

modulator
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

 

 

01 1 IN DAC

02 01

OX O2 QUANT

DAC OX

V A V V

V T s V

V V V

V V

 



 


Solving, we obtain

 
   

1

OX IN QUANT

1 1

T s A 1
V V V

1 T s A 1 T s A
 

 

Note:  Significantly different transfer functions for VIN and VQUANT
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

Consider using an integrator for T(s)

 
   

1

OX IN QUANT

1 1

T s A 1
V V V

1 T s A 1 T s A
 

 

  01I
T s

s


I01 is the unity gain frequency of the integrator and is a critical 

parameter in the modulator 

01 1
OX IN QUANT

01 1 01 1

I A s
V V V

s I A s I A
 

 

Thus

Note VIN is low-pass filtered and VQUANT is high-pass filtered and both are 

first-order with the same poles
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

ModulatorWith integrator for T(s)

01 1
OX IN QUANT

01 1 01 1

I A s
V V V

s I A s I A
 

 

Low-Pass

High-Pass

f3db

f

1

Signal and Noise Transfer Function Magnitudes

• Noise filtering will remove most of the noise from the signal band if the pole placed 

around signal band edge 

• Signal band will not be significantly affected

• Filtering the noise is termed “noise shaping” in the vernacular of the delta-

sigma community

• Since gain is 1 at high frequencies, HP filter does not increase spectral magnitude 

of noise at high frequencies 
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

Consider the noise output first

OX noise QUANT

01 1

s
V V

s I A





f3db fS/2

fQuant Noise

V

3dB 01 1f I A

f3db fS/2

fShaped Quant Noise

V

01 1
OX IN QUANT

01 1 01 1

I A s
V V V

s I A s I A
 

 

Major change in quantization noise spectral density at output



33

Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

Consider the input signal

01 1
OX IN IN

01 1

I A
V V

s I A



 3dB 01 1f I A

01 1
OX IN QUANT

01 1 01 1

I A s
V V V

s I A s I A
 

 

f3db fS/2

f

Signal 
Band

V

f3db fS/2

f

Signal 
Band

V

Little change in spectrum of input at the output
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

01 1
OX IN QUANT

01 1 01 1

I A s
V V V

s I A s I A
 

 

f3db fS/2

fQuant Noise

Signal 
Band

V

Combined effects

Remaining quantization noise can be dramatically reduced by a low-

pass digital filter following modulator  with band-edge around f3dB

The low-pass digital filter would have little effect on the signal band
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

Low-Pass

High-Pass

f3db

f

1

Signal and Noise Transfer Function Magnitudes

• A more selective filter (of higher order) would shape the noise even more and affect 

the passband even less if band edges are coincident

• Ideal low-pass and high-pass filters with coincident band edges followed by digital 

filter at output would allow nearly complete removal of the quantization noise !!

 
   

1

OX IN QUANT

1 1

T s A 1
V V V

1 T s A 1 T s A
 

 



Second-order Delta-Sigma ADC
(big benefit is noise shaping)

VIN

DAC

ADC

VQUANT

A1

V01 V03 V0X01I

s
A2

V02 02I

s

VDAC

Modulator only shown with two integrators

 01 1 IN DAC

01
02 2 01 DAC

02
03 02

OX O3 QUANT

DAC OX

V A V V

I
V A V V

s

I
V V

s

V V V

V V

 

 
  

 



 



Solving, obtain

2

01 02 1 2
OX IN QUANT2 2

02 2 01 02 1 2 02 2 01 02 1 2

I I A A s
V V V

s sI A I I A A s sI A I I A A
 

   



Higher-order Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Much sharper transition between noise pass-band and signal stop band 

From SLYT423 by Texas Instruments (author Bonnie Baker)

Baker reported TI used up to 6th order filters in SLYT423
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SC Circuits often used for Modulator



39

6.02 1.76 10log( )SNR n OSR  

6.02 1.76 5.17 30log( )SNR n OSR   

1.5 bits/octave

0.5 bits/octave

6.02 1.76 12.9 50log( )SNR n OSR   

2.5 bits/octave

Over-sampled ΔΣ ADC)

Oversampling Alone:

Oversampling  and First-Order Modulator:

Oversampling  and Second-Order Modulator:
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VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1
H(z)

V01 V02 V0X

VDAC

VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1

T(s)

Continuous-Time vs Discrete-Time  Delta-Sigma ADC



s-domain to z-domain transformations

XIN XOUT T s

XIN XOUT H z

?

    sTz=e
T s H zgoal:

consider: sTz e

 
0

1

!

sTz = e sT





i

i i

 
0

1
1

!
z = sT sT





 
i

i i

z -1
s = 

T

Termed the Forward Euler transformation

If can’t achieve this goal, would like to map imaginary axis to unit circle and map 

stable filters to stable filters

If normalized to T=1, s = z -1
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Analysis of Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

Modulator

Consider using an integrator for T(s) normalized to 1 rad/sec band edge

 
   

1

OX IN QUANT

1 1

T s A 1
V V V

1 T s A 1 T s A
 

 

 
1

T s
s



 1 1

OX IN QUANT IN QUANT

1 z 1
V V V z V V 1 z

z 1 1 z 1 1

 
    

   

Thus

Note VIN is low-pass filtered and VQUANT is high-pass filtered and both are 

first-order with the same poles

s = z -1substituting  
1

1

1 z
H z

z 1 1 z




 

 

STFNORM =
1z NTFNORM =

11 z
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Discrete-Time Delta-Sigma ADC (normalized)
(big benefit is noise shaping)

 1 1

OX IN QUANT IN QUANT

1 z 1
V V V z V V 1 z

z 1 1 z 1 1

 
    

   

Note VIN is low-pass filtered and VQUANT is high-pass filtered and both are 

first-order with the same poles

 
1

1

1 z
H z

z 1 1 z




 

 

STFNORM =
1z NTFNORM =

11 z

VIN

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1

V01 V02 V0X

VDAC

1

1

z

1 z





Modulator
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Discrete-Time Delta-Sigma ADC (normalized)
(big benefit is noise shaping)

 
1

1

1 z
H z

z 1 1 z




 

 

VIN

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1

V01 V02 V0X

VDAC

1

1

z

1 z





Modulator

f3db fS/2

fQuant Noise

SP

LSB

S

V

f
12

2

Spectral density of shaped quantization noise can be increased at higher 

frequencies with the high-pass noise filter 

But steep cutoff in the digital filter output will still remove the high-

frequency quantization noise
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Continuous-Time vs Discrete-Time Over-

sampled Delta-Sigma ADCs

VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1

T(s)

VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1
H(z)

V01 V02 V0X

VDAC

1. Input sampling errors for DT structures are never recovered

2. Nonlinearity of switches of concern in DT structures

3. No good switched in bipolar processes

4. Clock jitter adversely affects performance of discrete-time structures

5. Slew-rate requirements higher for DT structures and signal swings 

generally higher too

6. DT structures need additional headroom for switch control

7. CT structures can operate at lower supply voltages and lower power 

levels

8. Linearity of filter of increased concern in CT structures (particularly 

when using gm-C filters)

9. Transient response of DAC of increased concern in CT structures
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Peculiar Issues with Over-sampled Delta-Sigma ADCs

VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1

T(s)

VIN Filter

DAC

VOUT

n

Decimator /

Filter

n1

Oversampled ADC

ADC

VQUANT

A1
H(z)

V01 V02 V0X

VDAC

1. Increasing resolution of DAC, OSR, and filter order (in the right way) all offer 

potential for increasing ENOB

2. Output is not completely repeatable for a given input

3. Some dc inputs will introduce idle tones or spectral lines in the output

4. Dynamic range requirements for both the filter and the ADC may be high to 

avoid saturation  

5. Stability analysis may be challenging and require extensive time-domain 

simulations (because of nonlinearities, analytically not practical)

6. OSDS-ADCs are insensitive to errors in ADC though ADC errors may increase 

the amount of over-range required for filter

7. Although nonlinearity in the signal-band of the filter is important, it is usually not 

difficult to obtain

8. Nonlinearity errors of the DAC directly introduce nonlinearity in the OSDS-ADC 

so excellent DAC linearity is generally required

9. Dead zones (input regions with no output) may exist



Higher-order Delta-Sigma ADC
(big benefit is noise shaping)

VIN Filter

DAC

ADC

VQUANT

A1

T(s)

V01 V02 V0X

VDAC

SLYT423  Revised Sept 2016  by Texas Instruments

“How delta-sigma ADCs work ( Part 1 and Part 2)”

Author:  Bonnie Baker

Excellent Material on Delta-Sigma ADCs
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• Removal of high-frequency quantization noise

• But noise is still a problem in signal band
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Noise reduction (noise shaping) in signal band
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Noise reduction (noise shaping) in signal band
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Noise reduction (noise shaping) in signal band
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SC Circuits often used for Modulator
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6.02 1.76 10log( )SNR n OSR  

6.02 1.76 5.17 30log( )SNR n OSR   

1.5 bits/octave

0.5 bits/octave

6.02 1.76 12.9 50log( )SNR n OSR   

2.5 bits/octave

Over-sampled ΔΣ ADC)

Oversampling Alone:

Oversampling  and First-Order Modulator:

Oversampling  and Second-Order Modulator:
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Noise reduction (noise shaping) in signal band
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Layout Issues for Matching Critical Components

Layout plays a critical role in determining performance of most 

matching-critical circuits and is of particular concern in most data 

converters
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Layout Issues for Matching Critical Components

• Matching is dominantly determined by local random variations and gradient

effects – both of which are random variables at the design phase

• Mismatch induced by local random variations almost entirely determined by 

area allocated to matching-critical components

• Mismatch inducted by gradient effects strongly affected by layout

– Good statistical analysis tools available for predicting mismatch induced 

by local random variations (Monte-Carlo analysis in SPECTRE)

– Analytical formulations often (but not always) available for predicting 

effects of local random variations 

– At some resolution level, area required to maintain noise performance 

may dominate  that required for matching due to local random variations

– Gradient effects will usually dominate mismatch concerns if not managed

– No good statistical analysis tools available for predicting mismatch 

induced by local random variations

– Area allocation often plays no direct role in managing gradients though 

total span may play a role and may increase with area

– Conventional-wisdom used to guide layout to manage gradient effects

– With good layout techniques, gradient effects can usually be reduced 

below level of local random variations



Local Random Variations and Gradients in MOS Devices

Gate DrainSource 

Bulk

n-channel MOSFET

Impurity density or layer thicknesses vary linearly through the channel

Model and design parameters vary throughout channel and  thus the corresponding 

equivalent lumped model parameters will vary from device to device 

Gate DrainSource 

Bulk

n-channel MOSFET



Gradient and Local Random Effect

100µm

Gradient Effects :  Locally Appear  Linear

0.01µm Local Random Effects :  

Vary Locally With No 

Correlation

• Magnitude and Direction of Gradients are random

• Highly Correlated over Short Distances

• Both contribute to mismatch

• Both are random variables

• If not managed, both can cause large mismatch effects

• Strategies for minimizing their effects are different

• Will refer to the local random effects as “random”  and 

the random gradient effects as “gradient” effects



Resistor Characterization Concepts

Assume lithography is perfect, no gradient effects, and no contact resistance

 R x,y : Sheet resistance at (x,y)

Most authors assume:
 

A
EQ

R x,y dxdy

R
A




A=WL

1 2z z EQ

L
R R

W


L

x

y
W

(x,y)

z1 z2

We will make this same assumption

From a previous lecture 



Model Parameter Variation 

Almost Theorem:

Define p to be  a process parameter that varies with lateral position 

throughout the region defined by the channel of the transistor.

If p(x,y) varies throughout a two-dimensional region, then 

Parameters such at VT, µ and COX vary throughout a two-dimensional region

 
A

EQ dxdyyx,p
A

1
p

Local random variations introduce a random component in device model parameters 

which are uncorrelated but for ideally matched devices they are identically distributed

e.g.   VTEQi=VTN+VTR i

VTRi and VTRj due to local random variations are uncorrelated 

for i≠j but if ideally matched they are identically distributed



Model Parameter Variation 

Almost Theorem:

Define p to be  a process parameter that varies with lateral position 

throughout the region defined by the channel of the transistor.

If p(x,y) varies throughout a two-dimensional region, then 

 
A

EQ dxdyyx,p
A

1
p

Why almost?

Reason 1

Current densities dramatically different

W W

L

ε

WX

A

B

R 1 R 2

W W

L

ε

WX

D

S

VTH11 VTH12
G



Model Parameter Variation 

Almost Theorem:

Define p to be  a process parameter that varies with lateral position 

throughout the region defined by the channel of the transistor.

If p(x,y) varies throughout a two-dimensional region, then 

 
A

EQ dxdyyx,p
A

1
p

Why almost?

Reason 2

Models Inherently Different

VTH1 VTH2

 

 

 

2OX
D1 GS TH1

2OX
D2 GS TH2

2
OX

DEQ GS THEQ

μC W
I = V -V

2L

μC W
I = V -V

2L

μC W
I = V -V

2L

 

   

2 2
2OX 1 2

DEQ TH1 TH2

2
2 2 OXOX TH1 TH2

DEQ GS TH1 GS TH2 GS

μC 2W
I = V V

2L 2

μC WμC W V V
I = V -V V -V V -

2L 2L 2

 
   

 

        

TH TH
GS GS

EQ

EQ

V V
V V



 
A

EQ dxdyyx,p
A

1
p

x

y

Model Parameter Variation 



Common Centroid Layouts

Almost Theorem:

Define p to be  a process parameter that varies linearly with lateral position 

throughout the region defined by the channel of the transistor.

If p(x,y) varies linearly throughout a two-dimensional region, then 

Gradient effects cause parameters such at VT, µ and COX to vary approximately 

linearly throughout a two-dimensional region as long at the “span” of the region is 

not too large

 
A

EQ dxdyyx,p
A

1
p

The direction and magnitude of gradients are random variables but are 

correlated and identical for closely-placed devices 



Common Centroid Layouts

Almost Theorem:

If p(x,y) varies linearly throughout a two-dimensional region, then 

pEQ=p(x0.y0) where x0,y0 is the geometric centroid to the region.

If a parameter varies linearly throughout a two-dimensional region, it is said 

to have a linear gradient.

Many parameters have a dominantly linear gradient over rather small regions 

but large enough to encompass layouts where devices are ideally matched



(x0,y0)

 
A

EQ dxdyyx,p
A

1
p

If ρ(x,y) varies linearly in any direction, then the theorem states

   EQ 0 0
A

1
p p x,y dxdy p x ,y

A
 

(x0,y0) is geometric centroid

Common Centroid Layouts



Common Centroid Layouts

Almost Theorem:

Definition:  A layout of two devices is termed a common-centroid layout if 

both devices have the same geometric centroid

If p(x,y) varies linearly throughout a two-dimensional region, then if two 

devices have the same centroid, the lateral-variable parameters are 

matched !

Note:  This is true independent of the magnitude and direction of the gradient!

Almost Theorem:

If a common-centroid layout is used for the matching-critical part of an 

operational amplifier, the lateral-variable parameters (e.g. VTH, µ, COX) 

will introduce no mismatch!

Common-centroid layouts almost always used for matching-critical components to 

eliminate linear gradients of critical parameters ! 

But local random variations will still affect matching even if gradient effects are 

eliminated



Recall parallel combinations of transistors equivalent 

to a single transistor of appropriate W,L

2W,L

W,L W,L

M1
M2 Mk

W,L W,L W,L

kW,L



Centroids of Segmented Geometries
Denotes Geometric Centroid



Common Centroid of Multiple Segmented Geometries

M1A M1B
M2A M2B

M1A

M1B

M2A M2B

If these are layouts of gates of two transistors with two segments, M1 and M2

have common centroids.  They are thus termed common-centroid layouts



Common Centroid of Multiple Segmented Geometries



Common Centroid Layouts

Common centroid layouts widely (almost always) used where matching

of devices or components is critical because these layouts will cancel all

first-order gradient effects

Applies to resistors, capacitors, transistors and other components

Always orient all devices in the same way

Keep common centroid for interconnects, diffusions, and all features 

Often dummy devices placed on periphery to improve matching !



Common Centroid Layout Surrounded by 

Dummy Devices

More than one ring of dummy devices may be required 

Dummy devices may be used for other purposes as well 

e.g. bypass capacitors for capacitor arrays or binary-weighted LSB 

devices for segmented structures



https://electronics.stackexchange.com/questions/246463/multiple-fingers-vs-single-finger-layout-mosfet-transistor

Fingers and Multipliers

• Multiple fingers use shared diffusions

• Multipliers refer to multiple copies of transistors with individual drains 

and sources

Important to match orientation if overall device matching is required

Multiplier = 2

Fingers = 2Fingers = 2



https://electronics.stackexchange.com/questions/246463/multiple-fingers-vs-single-finger-layout-mosfet-transistor

Fingers and Multipliers

Alternate Orientations

If matching is important, orientations should be identical



End of Lecture 28


